9,783 research outputs found

    Solcore: A multi-scale, python-based library for modelling solar cells and semiconductor materials

    Full text link
    Computational models can provide significant insight into the operation mechanisms and deficiencies of photovoltaic solar cells. Solcore is a modular set of computational tools, written in Python 3, for the design and simulation of photovoltaic solar cells. Calculations can be performed on ideal, thermodynamic limiting behaviour, through to fitting experimentally accessible parameters such as dark and light IV curves and luminescence. Uniquely, it combines a complete semiconductor solver capable of modelling the optical and electrical properties of a wide range of solar cells, from quantum well devices to multi-junction solar cells. The model is a multi-scale simulation accounting for nanoscale phenomena such as the quantum confinement effects of semiconductor nanostructures, to micron level propagation of light through to the overall performance of solar arrays, including the modelling of the spectral irradiance based on atmospheric conditions. In this article we summarize the capabilities in addition to providing the physical insight and mathematical formulation behind the software with the purpose of serving as both a research and teaching tool.Comment: 25 pages, 18 figures, Journal of Computational Electronics (2018

    The Stationary Phase Method for a Wave Packet in a Semiconductor Layered System. The applicability of the method

    Full text link
    Using the formal analysis made by Bohm in his book, {\em "Quantum theory"}, Dover Publications Inc. New York (1979), to calculate approximately the phase time for a transmitted and the reflected wave packets through a potential barrier, we calculate the phase time for a semiconductor system formed by different mesoscopic layers. The transmitted and the reflected wave packets are analyzed and the applicability of this procedure, based on the stationary phase of a wave packet, is considered in different conditions. For the applicability of the stationary phase method an expression is obtained in the case of the transmitted wave depending only on the derivatives of the phase, up to third order. This condition indicates whether the parameters of the system allow to define the wave packet by its leading term. The case of a multiple barrier systems is shown as an illustration of the results. This formalism includes the use of the Transfer Matrix to describe the central stratum, whether it is formed by one layer (the single barrier case), or two barriers and an inner well (the DBRT system), but one can assume that this stratum can be comprise of any number or any kind of semiconductor layers.Comment: 15 pages, 4 figures although figure 4 has 5 graph

    Caveolin-1 Modulates Mechanotransduction Responses to Substrate Stiffness through Actin-Dependent Control of YAP

    Get PDF
    The transcriptional regulator YAP orchestrates many cellular functions, including tissue homeostasis, organ growth control, and tumorigenesis. Mechanical stimuli are a key input to YAP activity, but the mechanisms controlling this regulation remain largely uncharacterized. We show that CAV1 positively modulates the YAP mechanoresponse to substrate stiffness through actin-cytoskeleton-dependent and Hippo-kinase-independent mechanisms. RHO activity is necessary, but not sufficient, for CAV1-dependent mechanoregulation of YAP activity. Systematic quantitative interactomic studies and image-based small interfering RNA (siRNA) screens provide evidence that this actin-dependent regulation is determined by YAP interaction with the 14-3-3 protein YWHAH. Constitutive YAP activation rescued phenotypes associated with CAV1 loss, including defective extracellular matrix (ECM) remodeling. CAV1-mediated control of YAP activity was validated in vivo in a model of pancreatitis-driven acinar-to-ductal metaplasia. We propose that this CAV1-YAP mechanotransduction system controls a significant share of cell programs linked to these two pivotal regulators, with potentially broad physiological and pathological implications. Moreno-Vicente et al. report that CAV1, a key component of PM mechanosensing caveolae, mediates adaptation to ECM rigidity by modulating YAP activity through the control of actin dynamics and phosphorylation-dependent interaction of YAP with the 14-3-3-domain protein YWHAH. Cav1-dependent YAP regulation drives two pathophysiological processes: ECM remodeling and pancreatic ADM. © 2018 The Author

    The Influence of Dual-Recycling on Parametric Instabilities at Advanced LIGO

    Get PDF
    Laser interferometers with high circulating power and suspended optics, such as the LIGO gravitational wave detectors, experience an optomechanical coupling effect known as a parametric instability: the runaway excitation of a mechanical resonance in a mirror driven by the optical field. This can saturate the interferometer sensing and control systems and limit the observation time of the detector. Current mitigation techniques at the LIGO sites are successfully suppressing all observed parametric instabilities, and focus on the behaviour of the instabilities in the Fabry-Perot arm cavities of the interferometer, where the instabilities are first generated. In this paper we model the full dual-recycled Advanced LIGO design with inherent imperfections. We find that the addition of the power- and signal-recycling cavities shapes the interferometer response to mechanical modes, resulting in up to four times as many peaks. Changes to the accumulated phase or Gouy phase in the signal-recycling cavity have a significant impact on the parametric gain, and therefore which modes require suppression.Comment: 9 pages, 11 figures, 2 ancillary file
    • 

    corecore